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Abstract

Yarrowia lipolytica is an industrial yeast that has been used in the sustainable production of fatty acid-derived and lipid
compounds due to its high growth capacity, genetic tractability, and oleaginous properties. This investigation examines the
possibility of utilizing urea or urine as an alternative to ammonium sulfate as a nitrogen source to culture Y. lipolytica. The
use of a stoichiometrically equivalent concentration of urea in lieu of ammonium sulfate significantly increased cell growth when
glucose was used as the carbon source. Furthermore, Y. lipolytica growth was equally improved when grown with synthetic urine
and real human urine. Equivalent or better lipid production was achieved when cells are grown on urea or urine. The successful
use of urea and urine as nitrogen sources for Y. lipolytica growth highlights the potential of using cheaper media components as
well as exploiting and recycling non-treated human waste streams for biotechnology processes.
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Introduction

Yarrowia lipolytica is a non-conventional yeast that has been
used for the industrial production of organic acids (Liu et al.
2015; Sarris et al. 2011) and single-cell proteins (Zhao et al.
2013). Its extracellular secretory capabilities have made it a
promising industrial host for the production of secreted li-
pases (Brigida et al. 2014; Fickers et al. 2004; Moftah et al.
2013). Yarrowia lipolytica has been engineered to produce
lipids with high titer and productivity (Blazeck et al. 2014;
Papanikolaou and Aggelis 2002), free fatty acids (FAs)
(Ledesma-Amaro et al. 2016), omega-3-rich triacylglycerides
(Xue et al. 2013), fatty alcohols (Wang et al. 2016),
polyhydroxyalkonates (Haddouche et al. 2010), pentane
(Blazeck et al. 2013), itaconic acid (Blazeck et al. 2015),
and carotenoids (Schwartz et al. 2017). In addition, the ability
of Y. lipolytica to grow on and tolerate a wide range of
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substrates enables its utilization as a production host for a
diverse assortment of biochemical products (Bankar et al.
2009; Goncalves et al. 2014).

One of the main advantages of Y. lipolytica is its ability to
efficiently utilize alternative carbon sources (Shabbir Hussain
et al. 2016b). Furthermore, the growing range of genetic en-
gineering tools available for Y. lipolytica (Blazeck et al. 2011,
Curran et al. 2014; et al. 2016; Shabbir Hussain et al. 2016)
enables engineering metabolism of non-native substrates
(Rodriguez et al. 2016; Shaw et al. 2016). Currently,
Y. lipolytica is naturally capable of metabolizing hydrophobic
substrates including n-alkane, fats, and oils (Fickers et al.
2005). Studies have also exploited various waste streams as
potential carbon sources to grow Y. lipolytica including olive
mill wastewater (D’Annibale et al. 2006; Lanciotti et al.
2005), palm oil mill effluent (Oswal et al. 2002), fish waste
(Yano et al. 2008), stearin (Papanikolaou et al. 2007), pineap-
ple waste (Imandi et al. 2008), and sugarcane bagasse hydro-
lysate (Tsigie et al. 2011). Using these substrates is not only
economical but also simultaneously allows for waste disposal
and the creation of value-added products.

In addition to carbon, there are several other nutrients es-
sential for microbial growth and use as a biochemical produc-
tion platform. Among these, nitrogen is one of the most im-
portant components of microbial media as it is required for
important metabolic processes such as nucleotide and amino
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acid biosynthesis. The source and concentration of nitrogen
can influence the morphology and production of metabolites
by the microorganism (Szabo 1999). For example, lipase
production has been shown to be improved using tryptone
as a sole nitrogen source compared to yeast extract and
ammonium sulfate (Fickers et al. 2004). Furthermore, the
nitrogen source is known to influence triacylglyceride accu-
mulation in some yeast (Evans and Ratledge 1984). While
ammonium sulfate is commonly used for Y. lipolytica
growth in defined media, alternative nitrogen sources have
been investigated ranging from simple nitrogen sources such
as ammonium chloride and urea to the more complex forms
such as peptone and yeast extract (Evans and Ratledge
1984). Among these, urea holds great potential as a low-
cost nitrogen source for Y. lipolytica biomass accumulation.
Furthermore, urea is abundant in human waste such as urine,
which typically contains 10-20 g/L urea (~ 1-2% w/v), and
is the most abundant compound in urine after water (Bouatra
et al. 2013). In isolated conditions and resource-poor set-
tings, the ability to use natural waste to produce biochemi-
cals is highly desirable.

Here, we investigate the use of urea as a nitrogen source
for Y. lipolytica biomass and lipid accumulation. When nor-
malized to total nitrogen content, urea outperforms other
nitrogen sources providing higher growth rates and biomass
accumulation. For optimal growth, urea concentrations as
high as 20 g/L can be utilized although increasing concen-
trations beyond this level cause significant growth inhibi-
tion. We also investigated a synthetic urine formulation as
a nitrogen source for Y. lipolytica growth. Again, high cell
densities were achieved although the rate of growth was
slightly reduced. Increasing the C/N ratio by either increas-
ing glucose concentration or lowering nitrogen content in
synthetic urine improved lipid accumulation, similar to am-
monium sulfate. Finally, we demonstrated that human urine
could also be an effective nitrogen source without signifi-
cant growth inhibition. Together, this work shows that urea
and urine are both effective nitrogen sources for Y. lipolytica
growth. Since urea is cheaper than ammonium sulfate on an
equivalent nitrogen basis, a significant cost benefit may be
realized. Similarly, urine experiments demonstrate the poten-
tial to grow Y. lipolytica on human waste.

Materials and methods

Strains and chemicals Y. lipolytica strain PO1f (ATCC MYA-
2613; MATa leu2-270 ura3-302 xpr2-322 axp) was used for
all studies unless otherwise stated. Since this strain is a leu-
cine auxotroph, cells were transformed with a skeletal vector
(pSL16) containing the LEU2 gene and centromeric and
autonomous replicating sequence (CEN1/ARS) prior to all
growth studies (Shabbir Hussain et al. 2016a).
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Transformation was performed using the LiAc protocol that
has been described previously (Barth 1996). Yeast complete
synthetic media deficient in leucine (YSC-LEU) was pre-
pared using 6.7 g/L yeast nitrogen base without amino acids
and ammonium sulfate (Difco Laboratories) and 0.69 g/L
complete synthetic media (CSM-LEU) (Sunrise Science
Products). Our rationale for this was that we wanted to use
conditions similar to future experiments that will use these
plasmids to overexpress genes to produce useful products.
The dry cell weight of this strain is known to be linearly
correlated with optical density (Fig. S1). The pH remained
roughly constant at 6.5-7.5 throughout the experiments. The
Apex10 strain used in this study was created using CRISPR-
Cas9-mediated genome editing (Schwartz et al. 2016). A
6 bp deletion was made in pex/0 from +271 to + 277 bp,
causing a loss of function mutation. It was also transformed
using the abovementioned pSL16 vector. Various concentra-
tions of glucose (w/v) were used as the sole carbon source
for all experiments. For comparison between nitrogen
sources, equimolar concentrations of nitrogen (g/L) were
supplied into the media using either ammonium sulfate
(Amresco) or urea (Amresco). To find an optimal concentra-
tion of urea, we increased the concentration until deleterious
effects were observed. Human synthetic urine was formulat-
ed based on the most abundant metabolites commonly found
in urine, including urea, creatine (Sigma-Aldrich), citric acid
(Sigma-Aldrich), glycine (Sigma-Aldrich), sodium nitrate
(Fisher Scientific), hippuric acid (Fisher Scientific), and L-
cysteine (Fisher Scientific). Data from the human urine me-
tabolome project report average values for the main compo-
nents of human urine are 300 mM urea, 15 mM creatine,
7.5 mM hippuric acid, 7.5 mM citric acid, 3.8 mM L-cyste-
ine, and 3.8 mM glycine (Bouatra et al. 2013). Pooled hu-
man urine that was not treated was obtained from Lee
Biosolutions (991-03-P-1). Urine urea concentration was
quantified using a urea assay kit (Sigma-Aldrich). Urine
was stored at 4 °C and was handled within a biosafety level
2 cabinet. Urine was characterized immediately prior to use
and stored for no longer than 3 weeks.

Cell culture Transformed Y. lipolytica from YSC-LEU agar
plates were inoculated into 14-mL culture tubes containing
2 mL of YSC-LEU supplemented with 2% (w/v) glucose.
Cultures were allowed to grow for 48 h at 28 °C while
shaking at 215 rpm. Cells in late exponential phase were
centrifuged at 8000 rpm for 2 min and resuspended in
1.5 mL of sterile deionized water. Cells were then inoculated
at final ODggo of 0.2 into either fresh 2 mL cultures in
14-mL culture tubes or 15 mL cultures in 50-mL baffled
flasks, in triplicate. Cultures were allowed to grow for either
96 or 120 h at 28 °C while shaking at 215 rpm. Cell densi-
ties were measured every 24 h using a NanoDrop 2000c
from Thermo Scientific.
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Dry cell weight quantification Dry cell weight was determined
by washing 5 mL of cell culture with distilled deionized water
three times. The cell pellet was then resuspended in 0.5 mL of
water, placed in an aluminum dish, and dried for 24 h at
100 °C prior to measuring the dry cell weight. Three replicates
were measured and used to determine average dry cell weight
and standard error.

Lipid extraction and quantification Lipids were extracted,
methylated, and analyzed by gas chromatography with flame
ionization detection (GC-FID) exactly as described previously
(Rodriguez et al. 2016). Briefly, 1 mL of cells was harvested
and washed with distilled deionized water. In order to classify
and measure fatty acids in the cell biomass, lipids were
transesterified to fatty acid methyl esters (FAMEs). Prior to
transesterification, 100 puL glyceryl triheptadecanoate
(0.2 mg/uL hexane) was added to the cell pellet as an internal
standard along with 100 uL of pentadecanoic acid (0.2 mg/pL.
hexane) for FAME quantification purposes. Five hundred mi-
croliters of 0.5 M sodium methoxide (20 g/L sodium hydrox-
ide in methanol) was added for alkaline transesterification of
lipids to FAMEs. The solution was vortexed at room temper-
ature for 40 min at 2000 rpm and then neutralized with 40 uL
sulfuric acid. Eight hundred fifty microliters hexane was
added to extract the FAMEs and vortexed for 20 min at
2000 rpm. Finally, the mixture was then centrifuged for
I min at 8000 rpm, and 750 pL of the hexane layer was
collected for GC analysis. GC was performed using a 7890B
GC system from Agilent Technologies. Samples of 2 uL were
injected with split ratio of 10 and injector temperature of
250 °C. FAME species were separated on an Agilent J&W
DB-23 capillary column (30 m x 0.25 mm x 0.15 pum), with
helium carrier gas at a flow rate of 1 mL/min. The temperature
of'the oven started at 175 °C, and the temperature was ramped
with a gradient of 5 °C/min until 200 °C. The FID was oper-
ated at a temperature of 280 °C with a helium make up gas
flow of 25 mL/min, hydrogen flow of 30 mL/min, and air flow
of 300 mL/min.

Results

Urea is a preferred nitrogen source for Y. lipolytica growth
Ammonium sulfate is a commonly used nitrogen source for
yeast media formulations, with 5 g/L as the standard concen-
tration in yeast complete synthetic formulations. We wanted to
determine if the nitrogen sources abundant in urine could be
suitable replacements for ammonium sulfate in defined media.
Tested alongside ammonium sulfate were alterative nitrogen
sources used at equivalent total nitrogen concentrations of
1.06 g/L (Fig. 1). At the start of stationary phase after 48 h
of growth, cultures containing urea showed dramatically
higher cell densities reaching an ODggg of 35 in shake flasks.
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Fig. 1 Yarrowia lipolytica grown on different nitrogen sources. Five
grams per liter ammonium sulfate was used as a baseline amount of
nitrogen. All other sources were used at a stoichiometrically equivalent
ratio. Ammonium sulfate data is shown with triangles, urea with shaded
squares, creatine with circles, sodium nitrate with diamonds, and no
additional nitrogen source control with open squares. Strain PO1f{-
pSL16 was run in triplicate. Error bars represent one standard error

Furthermore, the urea containing culture also demonstrated
faster growth than the other cultures. The cell culture contain-
ing ammonium sulfate had comparably slower growth rates
and reached lower cell densities after 5 days of growth.
Creatine or sodium nitrate containing cell cultures performed
similar to culture containing no additional nitrogen and there-
fore are not good nitrogen sources for biomass accumulation.
To optimize the cell culture process, urea is the more desired
nitrogen source due to the improved growth rates and the
ability to reach high cell densities.

Optimizing urea concentrations Given that urea can effectively
be used as a nitrogen source, the next goal was to determine an
optimal concentration of urea to attain high cell densities. Urea
was added to the media at varying concentrations ranging from
2.56 to 40 g/L (Fig. 2). Urea concentrations as low as 0.29 g/L.
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Fig. 2 Yarrowia lipolytica grown on different concentrations of urea as
the only added nitrogen source. Growth curves using urea concentrations
0f2.28 g/L (stoichiometrically equivalent to 5 g/L ammonium sulfate) to
40 g/L. Strain PO1{-pSL16 was run in triplicate. Error bars represent one
standard error
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still elicit significantly better growth when compared to a no
additional nitrogen control (Fig. S2). Urea supplied at a
concentration of 10 and 20 g/L leads to significantly higher
growth after 96 h of culture when compared to all other
tested concentrations (Fig. 2). Concentrations of up to 20 g/
L of urea showed the most pronounced improvements in
biomass accumulation reaching an ODgqo of ~70 after 72 h
of growth in shake flasks (Fig. 2). This improved growth
rate might result from the increased flux of carbon into cell
biosynthesis instead of storage molecules due to the better
utilization of nitrogen. Increasing the urea concentration be-
yond 20 g/L urea elicited growth inhibition as shown for
cultures containing 40 g/L urea (Fig. 2).

Synthetic urine is a feasible nitrogen source for biomass ac-
cumulation Synthetic human urine contains approximately
18 g/L urea along with relatively low concentrations of other
substances including creatine, hippuric acid, citric acid, L-cys-
teine, and glycine. Given that Y. lipolytica accumulates signif-
icant biomass with 20 g/L urea, synthetic urine was tested as a
viable nitrogen source for optimal growth (Fig. 3). Here, we
observed that high cell densities were still achieved with syn-
thetic urine (18 g/L urea), with a fourfold improvement in cell
density relative to the no additional nitrogen source culture,
although the initial growth rate was somewhat diminished
relative to cultures using urea alone as a nitrogen source
(20 g/L in Fig. 2). This demonstrates the ability of
Y. lipolytica to utilize urea and to tolerate the other chemicals
in synthetic urine. Interestingly, cell growth was inhibited by
the ammonium sulfate concentration of equivalent nitrogen
content (Fig. 3). Together, these results demonstrate the po-
tential for Y. lipolytica growth and bioproduction on nitrogen-
rich human or animal waste streams.

Lipid accumulation in oleaginous yeast is induced by nu-
trient limitation, most commonly the C/N ratio. We first

=0--No Additional Nitrogen Source
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Fig. 3 Yarrowia lipolytica grown with synthetic urine as its only added
nitrogen source. Yarrowia lipolytica was also grown in synthetic urine
(circles) and compared with 39.6 g/L. ammonium sulfate (stoichiometri-
cally equivalent to 18 g/L urea; triangles) as its only added nitrogen, and a
no additional nitrogen source control (squares). Strain PO1{f-pSL16 was
run in triplicate. Error bars represent one standard error
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altered the C/N ratio using a constant 2 w/v% glucose concen-
tration and increasingly lowered the concentrations of the ni-
trogen source. We compared lipid titers and lipid profiles
using either ammonium sulfate or synthetic urine as the nitro-
gen source. We observed general improvements in lipid accu-
mulation in the PO1f strain using synthetic urine as the sole
nitrogen source compared with ammonium sulfate (Fig. 4a).
Based on the results presented here, the best conditions to
accumulate lipids with urea as a nitrogen source are a C/N
ratio of 120:1. The fatty acid profiles remain nearly identical
between the two nitrogen sources demonstrating that the ni-
trogen source may not be a major contributor to FA diversity
in Y. lipolytica (Fig. 4b). We can further conclude that the use
ofurea does not induce additional membrane stress that would
normally be reflected in a change in the fatty acid profile
(Rodriguez-Vargas et al. 2007). We alternatively used a higher
glucose concentration to accommodate a higher nitrogen con-
centration (Fig. 4c). This approach was not successful in im-
proving lipid concentrations with 8% (w/v) glucose. The 60:1
ratio demonstrated poor lipid accumulation in 8% (w/v) glu-
cose, while at 120:1 and 240:1, 8% glucose resulted in similar
lipid percentage with expected increases in cell biomass and
lipid titer (Fig. 4c and Table 1). It was interesting to note that
there is a shift towards a more saturated fatty acid profile in the
60:1 ratio containing 8% (w/v) glucose when compared to the
same ratio containing 2% (w/v) glucose (Fig. 4d). Lipid pro-
files for all C/N ratios are summarized in Table 1.

Synthetic urine is a feasible nitrogen source for lipid accumu-
lation Being able to accumulate significant amounts of lipids
is one of the more desirable traits of Y. lipolytica. A common
method to obtain increased lipid yields is to eliminate compet-
ing pathways, such as beta oxidation, while shifting the flux
towards triacylglyceride accumulation by using a higher C/N
ratio (Sarris et al. 2011). Here, we knocked out pex/0, impli-
cated in peroxisomal biogenesis required for fatty acid metab-
olism (Xue et al. 2013) and used synthetic urine as a nitrogen
source in comparison to the more commonly used ammonium
sulfate. By gradually increasing the C/N ratios from 60 to 240,
we observed that cultures containing synthetic urine as a ni-
trogen source were able to accumulate significantly more
lipids compared with the cultures utilizing ammonium sulfate
(Fig. 5a). The FA profile for cells grown in these two condi-
tions were similar, with higher proportions of oleic acid and
lower proportions of stearic acid found when using synthetic
urine as a nitrogen source (Fig. 5b and Table 2).

Human urine is a good nitrogen source for Y. lipolytica
growth Finally, we purchased fresh untreated pooled human
urine and used it as a replacement for ammonium sulfate in
defined media. We measured 13.5 g/L urea in the pooled urine
and set up a control culture with the same concentration of
urea as the nitrogen source. Controls containing human urine
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Fig. 4 Yarrowia lipolytica grown on different nitrogen and carbon
conditions. a Percentage of lipids by dry cell weight when grown on
varying nitrogen sources. b Sample lipid profile using a C/N ratio of
60:1. ¢ Percentage of lipids by dry cell weight when grown with varying

that were not inoculated with yeast showed no detectable
change in ODg (data not shown). Wild-type Y. lipolytica
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Strain PO1f-pSL16 was run in triplicate. Error bars represent one standard
error. All data was collected at 120 h

grows faster on untreated pooled human urine compared to
urea alone (Fig. 6a). Nearly equivalent dry cell weights were

Table 1 Yarrowia lipolytica grown with either ammonium sulfate of human synthetic urine as a nitrogen source. Strain PO1f-pSL16 was run in

triplicate

C/Nratio  Conc. (g/L) Cell conc. (g/L)  Lipid conc. (g/L)  Fatty acids (%)

(NHy), SO;  Urea® C16:0 Cl6:1 C18:0 Cl18:1 C18:2

8.8:1 5 0 230+0.14 0.166 £ 0.016 18605 74+12 99+09 525+18 11.6+0.8
30:1 1.47 0 2.93 +£0.03 0414 +£0.014 176 £0.1 49+07 162+04 495+04 11.7+09
60:1 0.735 0 3.76 +£0.39 0.588 £0.077 18.6+37 72+03 125+25 506+27 11.0+3.1
120:1 0.368 0 3.39+0.08 0.621 £0.019 171+04 60+14 102+0.1 529+1.0 13.7+0.0
240:1 0.184 0 2.59+0.03 0.586 = 0.074 18411 75+£05 133+0.8 465+27 142+14
1.1:1 0 18 5.47+0.14 0.362 £0.051 21.7+08 53+£08 20731 292+1.1 23.1£25
8.8:1 0 2.26 1.54+0.19 0.159 £ 0.024 143+05 56+00 102+02 471+0.8 22.8+0.8
30:1 0 0.667 227+0.15 0.197 £0.012 11.1+£05 52+09 74+1.1 61641 146+1.6
60:1 0 0333 2.81+0.12 0.566 + 0.050 154+12 84+07 9.0+21 600+13 11.2+14
60:1 0 1.333  3.53+0.30 0.387 £0.062 292+£05 53+£01 224+£06 364=+006 6.6+03
120:1 0 0.167 1.65+0.14 0.420 £ 0.074 194+02 69+05 13.1+09 481+18 12.6+1.6
120:1 0 0.667  4.30+0.03 0.978 £0.146 335£03 40+1.1 228+£05 352+14 45+02
240:1 0 0.084 2.08+0.14 0.441 £0.061 175+12 81+02 114+06 485+3.1 146+14
240:1 0 0333 4.45+0.10 1.160 +0.231 244+11 60+£08 17.1+08 464+09 62+02

+ Represents one standard error

# Amount of urea in the human synthetic urine
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Fig. 5 Yarrowia lipolytica Apex10 grown on different nitrogen and
conditions. a Percentage of lipids by dry cell weight when grown on
varying nitrogen sources. b Sample lipid profile using a C/N ratio of

obtained (Fig. 6b) while fewer lipids accumulated (Fig. 6b) for
the human urine samples. The fatty acid distribution was
somewhat altered as linoleic acid proportion increased at the
expense of palmitic and stearic acids (Fig. 6¢ and Table 3) for
the human urine samples. This demonstrates that real human
urine could be used effectively as a nitrogen source for
Y. lipolytica growth and associated bioproduction.

Lipid accumulation was also quantified when using pooled
human urine as the only additional nitrogen source. We found
the 120:1 C/N ratio to be optimal for lipid accumulation
(Fig. 7a). Comparing these results to Fig. 4a, we see that lipid
accumulation and profile (Fig. 7b) are nearly identical be-
tween real and synthetic human urine. Interestingly, dry cell
weights on real human urine were higher than observed on
synthetic urine (Tables 1 and 3).

Discussion

In this work, we have demonstrated the equivalence or bene-
fits of replacing ammonium sulfate with urea for growth of
Y. lipolytica. On an equivalent nitrogen basis, urea is far more

Table 2
was run in triplicate

60:1. Strain PO1f-Apex10-pSL16 was run in triplicate. Error bars repre-
sent one standard error. Data were collected at 120 h

effective for biomass accumulation. Furthermore, urea has a
higher nitrogen content on a weight basis compared to ammo-
nium sulfate, making it much more effective on a weight basis.
Coupled with the increase in lipid accumulation and titer, urea
appears to outcompete ammonium sulfate when using glucose
as a carbon source for the production of both biomass and
lipids. We went further and examined for the first time the
ability to use synthetic and untreated real human urine as a
nitrogen source for the growth of oleaginous yeast. To our
knowledge, this is the first report considering urine as a feed-
stock for a microbial bioprocess.

Other studies comparing the effects of nitrogen source on
the growth and bioproduct titers in various yeasts have pro-
vided inconclusive results. For example, cultures of
Rhodotorula glutinis grown on olive mill wastewater
(OMW) performed better when urea was used as a nitrogen
source compared to ammonium sulfate or ammonium nitrate
(Karakaya et al. 2012). On the contrary, biomass accumulation
was lower compared to ammonium sulfate, ammonium ni-
trate, and ammonium chloride when grown on plant oils as a
carbon source (Darvishi et al. 2009). Lipase production was
optimized by the use of urea of a nitrogen source (Corzo and

Yarrowia lipolytica Apex10 grown with either ammonium sulfate of human synthetic urine as a nitrogen source. Strain PO1{-pSL16-Apex10

C/N ratio Conc. (g/L) Cell conc. (g/L) Lipid conc. (g/L) Fatty acids (%)
(NHy), SO4  Urea® C16:0 Cl6:1 C18:0 C18:1 C18:2
60:1 0.735 0 324+0.10 0.356 +0.083 204 +0.1 45+0.5 257+1.0 379+03 11.5+0.8
120:1 0.368 0 3.79£0.11 0.559 +£0.127 195+40 57+09 11.6£3.1 52.1£39 11.1+23
240:1 0.184 0 323+0.12 0.608 +0.091 18.0£0.3 6.9+0.0 93+02 523+0.3 13.4£0.1
60:1 0 0.333 246+0.13 0.283 +0.024 17.7+£23 3.1+0.8 16.1+£3.6  52.0+6.6 11.0£0.5
120:1 0 0.167  2.80+0.01 0.580 +0.028 199+0.6 6.1+0.1 11.3+09 51.9+02 109+14
240:1 0 0.084 2.06+0.13 0.649 £0.113 18.5+0.3 6.5+0.1 9.5+02 51.7+04 13.3£0.2

+ Represents one standard error

* Amount of urea in the human synthetic urine
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Revah 1999). Noteworthy was that biomass production was
optimized by a combination of yeast extract, urea, and ammo-
nium sulfate. The differences observed are likely influenced
by changes in carbon source, feedstock complexity, concen-
tration of nitrogen source, and cultivation time, given the cen-
tral role of nitrogen metabolism. Few differences in fatty acid
composition were observed throughout our experiments. One
notable exception is the Apex10 strain grown on ammonium
sulfate. In this strain, oleic acid accumulation decreases and
stearic acid increases; however, these changes are consistent
with the variation seen in other studies (Rigouin et al. 2017;
Rodriguez et al. 2016).

To exploit Y. lipolytica for industrial bioproduction, it is
desirable to be able to either accumulate biomass or lipids
in the most cost-effective way. This can be accomplished by
either decreasing costs of raw materials or increasing prod-
uct output. In our experiments, urea accomplishes both. One

Fatty Acid

method to lower costs of raw materials is by decreasing the
cost of nitrogen feed stream. Current average market prices
suggest that it is more economical to use urea in large-scale
bioreactors as compared to ammonium sulfate (Table 4).
Although the price per weight for ammonium sulfate is
cheaper than urea, the overall cost of urea is less due its
higher nitrogen content, and therefore a motivation for
using urea as an industrial nitrogen source. We also dem-
onstrated improved lipid accumulation and titer in urea
compared to ammonium sulfate, in low nitrogen conditions
using a beta oxidation-deficient Apex/0 strain. It should be
noted that Apex/0 strains grown in urea have reduced cell
biomass. One possible explanation is that urea and
glyoxylate are produced by the breakdown of purines
through the degradation of alantoin (Dal) pathway (Prinz
et al. 2004). The glyoxylate cycle requires functional per-
oxisomes and perhaps induces stress in its absence and

Table 3 Yarrowia lipolytica grown with either urea or real human urine as a nitrogen source. Strain PO1f-pSL16 was run in triplicate

C/N ratio Conc. (g/L) Cell conc. (g/L) Lipid conc. (g/L) Fatty acids (%)

Urea Urea®

C16:0 Cle:1 C18:0 Cl18:1 C18:2

1.5:1 13.5 0 5.89+£0.33 0.649 +0.034
1.5:1 0 13.5 6.29+0.12 0.330 +0.003
8.8:1 0 2.26 3.22+0.04 0.290 + 0.026
60:1 0 0.333 3.18+0.14 0.653 £ 0.023
120:1 0 0.167 2.45+0.06 0.627 + 0.040
240:1 0 0.084 2.79+0.11 0.454 + 0.066

17.9+0.3 54+04 12.6 £0.5 443+0.2 19.8+0.6
13.8+3.1 73+12 55+3.1 453+1.0 28.1+6.4
11.2+0.5 65+1.2 42+0.6 56.9+0.9 212+13
17.0+0.1 8.1+0.5 84+02 574+£2.0 9.1+22
16.6 £ 0.4 7.7+0.1 84+0.0 55.0£0.1 122+0.3
16.6 £0.3 7.6+0.1 8.6+0.2 543403 12.8+0.1

+ Represents one standard error

% Amount of urea in the human urine

@ Springer
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Fig. 7 Yarrowia lipolytica grown on real human urine with 2% glucose. a Percentage of lipids by dry cell weight at different C/N ratios. b Sample lipid
profile using a C/N of 60:1. Strain PO1f-pSL16 was run in triplicate. Error bars represent one standard error. Data was collected at 96 h

possible remodeling of the nitrogen metabolism in these
conditions (Kunze et al. 2006).

While this single knockout strategy leads to moderate in-
creases in lipid accumulation compared to more modified
strains (Blazeck et al. 2014; Qiao et al. 2015), we demonstrate
the ability to trigger improved lipid accumulation and titer by
simply switching nitrogen source. It is yet to be determined if
these improvements are also realized when using higher pro-
ductivity lipid-accumulating strains.

Another advantage for the use of urea is the relative abun-
dance of this compound. By demonstrating that synthetic hu-
man urine can be used as a nitrogen feed source with
Y. lipolytica, it opens the possibility of potentially using a
natural waste product such as human urine as a nitrogen
source to achieve maximum biomass accumulation or lipid
production. Turning waste into value-added products and cre-
ating a more renewable or “closed-loop” system is not only
environmentally friendly but may improve process econom-
ics. These closed-loop systems are especially important in
resource-poor environments such as submarines, remote out-
posts, and in space travel where there are physical space lim-
itations and issues with storage and removal of waste (Godia
et al. 2002; Menezes et al. 2015).

Urea metabolism has been well studied in S. cerevisiae and
C. utilis (Hofman-Bang 1999; Roon et al. 1972). Yarrowia
lipolytica has two homologs (YALIOEO7271p and
YALIOE35156p) of the DURI,2 urea amidolyase gene from
S. cerevisiae and two homologs (YALIOB04202p and
YALIOC15807p) of the DUR3 urea transporter. Given the
number of duplicated urea metabolism genes, we suggest that

Table 4 Nitrogen source cost analysis

Nitrogen source Average cost Input required at Cost per

($/ton) 1.1:1 C/N (g/L) 100,000 L
Ammonium sulfate $123 39.6 $536.91
Urea (from synthetic urine) $234 18.0 $464.29

@ Springer

Y. lipolytica may be better poised to utilize urea than
S. cerevisiae, which prefers ammonium. However, further
studies are needed to clarify the functional relevance of this
redundancy and whether it is consistent with the backup hy-
pothesis or if these paralogs have non-overlapping function
consistent with the piggyback hypothesis (Qian et al. 2010;
Vavouri et al. 2008).

This study shows that urea is a better replacement for am-
monium sulfate when growing Y. lipolytica on defined glucose
containing media. Furthermore, we demonstrated the potential
to use human urine as a rich nitrogen source for yeast growth.
These findings open the door for bioprocesses in resource-
poor environments utilizing human waste for useful products.
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